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In two earlier papers on multiply connected ABCD spin 1/2 spin systems, it was 
shown that it is possible to simplify the calculation of (i) the time dependent density 
matrix p(t), and (ii) the time evolution of high-order multiple quantum operators, evol- 
ving in the presence of differing Zeeman offsets, scalar coupling and dipolar interactions, 
by subdividing the Hamiltonian 7-/into (~1 + ~2), where 7-/1 is a suitable linear combina- 
tion of the constants of the motion. In this paper, these techniques are applied to the ben- 
zene ring with particular emphasis on high-order multiple-quantum NMR experiments, 
and their interpretation in terms of specific wavefunctions. In particular, it is shown that 
excellent agreement between theory and experiment can be obtained for the energy split- 
tings witnessed in the Am = +4, +5 MQ-NMR transitions, with minimum effort. 

1. Introduct ion 

In two preceding papers [1,2], it was shown that the determinat ion of  the time 
dependent  density matrix p(t), for ABC, etc., coupled spin 1/2 spin systems, can be 
greatly simplified by  subdividing the Hamil tonian into 

7-/= ~1 + 7-/2, (1) 

where 7-/1 commutes  with 7-/. In practice, this is achieved by (i) identifying the con- 
stants o f  the mot ion  for 7-/, and (ii) setting 7-/1 equal to a suitable combinat ion of  the 
constants  o f  the motion.  The evolution of  the density matrix can then be fac- 
torised: 

p(t) = e -'~2t/h [e-l~'t/hp(O)e+m't/h]e +~7~2t/h . (2) 

This leads not  only to simplifications in the calculation of  the density matrix p(t),  
but  also in the determinat ion of  the eigenvalues and eigenfunctions of  H.  In prac- 
tice, it is a very straight forward mat ter  to compute  the evolution of  the density 
matrix under  the action of  7-/1, but  less so for 7-/2. Nevertheless, even for 7-/2 a sur- 
prising number  of  simplifications can be made. For  example, (i) if K is the maxi- 
m u m  rank tensor available to the spin system, mult ipolar  states of  the form 
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p(0) = "F~r, are simple constants of the motion under the action of 7-/2 [1], and (ii) 
the evolution of high-order tensor operators -~xQ, where the order I QI is equal to 
K - 1, requires only a restricted number of eigenfunctions and eigenvalues of 7-[2 
[21. 

In this paper, the techniques developed in [1,2] are applied to the benzene ring, 
a six spin 1/2 dipolar coupled spin system. The dipole-dipole interactions between 
the spins are treated within the secular approximation, thus guaranteeing that 3"z is 
a good quantum number. This observation, together with the sixfold symmetry of 
the benzene ring itself, is exploited to the full in the determination of the eigenvalues 
and eigenfunctions of~2. 

It should, of course, be noted that in the past the NMR properties of the benzene 
ring have attracted the attention of many authors, both experimentally and theore- 
tically [3-8]. In particular, the multiple quantum (MQ) NMR spectra of liquid crys- 
tal aligned benzene have been well documented, see for example the reviews in [8,9]. 
However, the treatment given in this paper differs in that (i) it provides analytical 
solutions for the 64 energy levels and eigenfunctions, (ii) it identifies the wavefunc- 
tions targeted in MQ-NMR experiments, and (iii) it provides a simplified frame- 
work which can be used to obtain explicit forms for the time evolution of the 
density matrix p(t). In addition, (i) the intuitive comments of [8], concerning the 
ortho, meta and para descriptions of the MQ-NMR Am = 4-4 transitions, are re- 
interpreted in the light of the exact solutions, and (ii) although the discussion is con- 
fined in the main to Am ~> 4 MQ-NMR transitions, the results given in this paper 
could be extended to discuss all the remaining MQ-transitions, if so desired. 

Finally, it should be noted that an exact solution for six dipolar coupled spin 1 / 
2 nuclei, arranged in a C2v symmetry, has been given in [10]. This particular symme- 
try is encountered in molecules with two rotating methyl groups. Thus the results 
given in [10] are not applicable to the benzene ring. 

2. The benzene ring 

As is well known, the benzene ring possesses a sixfold symmetry axis about an 
axis passing through the centre of the plane, as shown in Fig. 1. However, in the 
presence of a magnetic field, this symmetry is lowered depending on the number of 

A B \ / 

i/ \\ F-- --C \\ // 

E / \ D  

Fig. 1. Labelling scheme used for the benzene ring. 
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spin-up and spin-down states. In such instances, it is imperative to adhere to a con- 
sistent labelling scheme. For the purposes of this paper therefore, we shall use the 
labelling scheme shown in Fig. 1. 

In general, a labelling scheme A, A', . . .  A"" ,  would be more appropriate, to 
reflect the equivalent nature of all the spins. However, such a labelling scheme is 
cumbersome. 

3. The Hami l ton ian  

In the secular approximation, the Hamiltonian for the six spin 1/2 hydrogen 
nuclei associated with the benzene ring can be written in the form 

7-l/h = ~ AwIz(i) + ~ ~ Dij[Iz(i)I.(j) - ¼(I+(i)I_(/) + I - ( i )L( j )}] ,  (3) 
i i>j 

where (i) Aw is the resonant offset, and (ii) the dipolar constants D/j are given by 

Dij--IM)'Y2( 1-cOs2Oij ) 47rti r 3. " (4) 

For this Hamiltonian, the total ,J'z operator: 

ffz = ~-'~Iz(i) (7) 
i 

is a good quantum number. Following [1,2], therefore, it is advantageous to divide 
the Hamiltonian up into 7-/1 + 7-/2, where (i) 

7-/,/h = ~ Awlz(i) + D ~ ~-~Iz(i)Iz(/) (8) 
i i>j 

(ii) 

7-[2/li = ~ ~-~.[(Dij - D)Iz(i)Iz(]) - ¼ Do'{I+(i)I-(j ) + I_(i)I+~)}] 
i>j 

and (iii) 

1 [3D12 + 3D13 + DI4] 
i>j 

(9) 

(10) 

Note that for the benzene ring D12, D13, and D14 are simply related to each other. 
However, for the present we shall treat them as independent parameters, until it is 
imperative to do otherwise. 

Using the observation that ffz is a good quantum number, the 64 x 64 
Hamiltonian matrix for the benzene ring can be block-diagonalized, as shown sche- 
matically in Fig. 2.  In practice, the Hamiltonian matrix for 7-il is characterized by 
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3 2 1 0 --1 --2 

l x l  

6 x 6  

15 × 15 

20 x 20 

15 × 15 

6 x 6  

- 3  

l x l  

Fig. 2. Schematic form of the 64 × 64 matrix for the benzene ring. 

simple diagonal entries, in each of the block-diagonal matrices shown in Fig. 2. 
This is not  the case for 7/2, but it is easily shown that there are null entries in the 
I J ~ = + 3 )  1 × 1 matrices. As a result, multipolar states of  the form 
p(0) = A~-B±C±D±E±F± (i.e. order Q = +6) are constants of the mot ion  under 
7-/2, and can only evolve under the action of 7/1. The precise form of  the 7/1 and 7/2 
matrices are discussed in more detail in the next two sections. 

4. Eigenvalues and eigenvectors of 7/1 

In this case it is easily shown that  matrix of  i l l  takes the form 

7/i = [+3Aw + !~ D]E(1) @ [+2Aw + 5D]E(6) @ [+Aw - ¼/)]E(15) 

@ [ -  ]b]E(20)  

@ [ - A w -  ¼ D]E(15) @ [--2Aw + ~ D]E(6) @ [-3 Aw + !~ D]E(1), (11) 

where E(n) is a shorthand for the n x n unit matrix. The energy levels for 7/'/1 are 
shown schematically in Fig. 3. The eigenfunctions and eigenvalues of  7[1 are there- 
fore very transparent.  

5. Eigenvalues and eigenvectors of  7/2 

The situation for H2 is a little more complicated. However, with the definition 
o f D  ofeq.  (10), it is easy to show that the ff~ = +3 entries in the block diagonal 
form of  7/2 are identically equal to zero, as mentioned earlier. However, the 6 x 6, 
15 x 15, 20 x 20 matrices require more attention. 
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Bz = +3 

+1+20 ( / _ _  AmAc0AO~ 

-I \ \ - -  :,co 

> Am 
-2 

Am 
-3 

Degeneracy 

+15~/4 1 

+5U / 4 6 

-- I5/4 15 

-315/4 20 

1514 15 
- - .  +515 14 6 

+1 5"U/4 1 

Fig. 3. Energy level diagram for 7-I 1 . 

After some minor algebra, it can be shown that the 6 x 6 matrix spanned by 
,.7~ = + 2  (which is identical to that of,7~ = - 2 )  is given by 

1 
7~(jz = + 2 )  = - 

IA) 18)Ic)ID)IE)IF) 

0 c~ 3 7 3 a 

o~ 0 ,~ 3 7 3 

3 o~ 0 a 3 7 

7 3 ,~ 0 a 3 

3 7 3 a 0 a 

a 3 7 3 a 0 

where (i), for compactness, we have defined 

(12) 

Ot = DI2, 

/3 = D13, 
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7 = D 1 4 ,  

1 (2~ + 2~ +-~) (13) b =  5 

and (ii) the 6 x 6 matrix has been labelled with the wavefunctions {A), ]B), IC), 
ID>, [E>, IF>, where {X) is a shorthand notation for all spins up except at the spin- 
down position X. Note also that (i) the diagonal terms are zero, and (ii) the 6 x 6 
matrix of (12) is a circulant. The latter is easily diagonalized using the unitary trans- 
formation 

1 

1 

1 1 
U6 = - ~  

1 

1 

1 

where 

e = e - i 2~r /6  . 

1 1 1 1 1 

- 1  1 - 1  1 - 1  

e e 2 - -1  e 4 e 5 

e 5 e 4 -1  e 2 e 

e 2 e 4 1 e 2 e 4 

e 4 e 2 1 e 4 e 2 

(14) 

(15) 

This unitary transformation reflects the sixfold rotational symmetry of the benzene 
ring and is identical with the character table for the C6 group [11]. It is worth noting 
that (i) this unitary transformation gives equal weighting to the six differing spin 
configurations used to label (12), and (ii) it leaves the 6 x 6 matrix of 7-/1, a unit 
matrix multiplied by the constant (2Aw + 5/)/4), unchanged. 

With the aid of(14) and (15), we find 

1 
U67"/2(Oq 'z  = +2)U61 = - 

(2a + 2fl + 3') 

( - 2 a  + 2fl - 3") 

O 

0 

( - ~  - ~ + 7) 

( - ~  - /3  + 3') 

(16) 

Thus the energy levels are characterized by two singlets and two doublets. Note also 
that the leading eigenvalue E1 = -(2c~ + 2/3 + 3')/4 is characterized by the fully 
symmetric wavefunction 
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1 
I~),  - ~ [ I A )  + IB) + IC) + ID) + IE) + IF)]. (17) 

This is the wavefunct ion  targeted in a Am = +5  mult iple q u a n t u m  experiment ,  a 
point  first recognized by [6]. Consider  the matr ix  element  between the 13"z = - 3 )  
and ]Jz = +2) levels: 

M E  = (ffz = -31 ~ Jx(i)lff~ = +2}.  (18) 
i 

Since bo th  the opera tor  ~ Jx(i) and the wavefunct ion ]ffz = - 3 )  are fully sym- 
metric,  only t~}s ofeq.  (17) can give a non-zero matr ix  element ME.  Thus  of  the six 
possible Am = +5  transit ions,  only one is allowed by symmetry.  Fur ther ,  the 
energy of  this t ransi t ion is given by 

E[ f fz ( -3 )  --+ ffz(+2)] = 5Aw + [5/)/4 - 1 (2o~ + 2fl + 7)] - 15/) /4 

= 5 A w -  1519/4. (19) 

Similarly, 

E [ J z ( - 2 )  --, ff~(+3)] = 5Aco + 15/) /4 .  (20) 

Thus  the Am = +5 transi t ion is characterized by two peaks centred on 5Aw, 
with an energy separat ion of  15[9/2. This is indeed found to be the case experi- 
mental ly.  In the case of  the benzene ring, therefore, only l imited informat ion,  in 
the fo rm of  an average dipolar  field constant ,  can be gleaned f rom Am = +5 
MQ-transi t ions .  To go further we mus t  examine Am = :t:4 M Q - N M R  transi- 
tions. 

6. M u l t i p l e  q u a n t u m  Am = :t:4 t r ans i t ions  

There are three sources of  say Am----+4 transitions. These are f rom 
[J~ = -2} ---, 13"z = +2}, [ffz = - 3 )  --, [Jz = +1}, and [ffz = - 1 )  ~ [ffz = +3}, 
respectively. We already have enough informat ion  to determine the allowed transi- 
t ions for the first set of  transitions. However,  for the remaining two sets of  transi- 
t ions it will be necessary to determine the eigenvalues and eigenvectors of  the 
[Jz = +1} levels. 

In the first place, it is necessary to define our  labelling scheme used for the 
]ffz = + 1 ) 15 x 15 7-[2 matrix.  The first six labels I 1) to 16) belong to adjacent  down 
spins i.e. JAB), IBC), ICD), JOE), lEE), lEA). The next six labels 17) to 112) belong 
to next nearest  ne ighbour  down spins i.e.: IAC), IBD), ICE), IDF), lEA), IFB). 
Finally, the last three labels I13) to l15) belong to those down spins whose separa- 
t ion is a m a x i m u m ,  i.e. lAD), {BE), ICE). Proceeding in this fashion we find the 
],7"z = +l )7-h  matrix: 
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7-/2(,.7"z = +1)  = ( - 1 / 4 ) x  

v f l o o o ¢  
f l n f l o o o  
o f l v f l o o  
o o ~ . ~ o  
o o o C v f l  
¢ o o o ¢ ~  
a a 7 0 0 3, 

3, a a 3' 0 0 

0 7 a a 7 0 

0 0 3' a a 7 

'7 0 0 3, a a 

a 3, 0 0 7 a 

f l o f l f l o f l  
f l f l o f l ~ o  
o f l f l o ~ f l  

a 3, 0 0 7 a 

a a 7 0 0 3' 

3' a a 7 0 0 

0 3' a a 7 0 

0 0 3' a a 3' 

7 0 0 3' a a 

x O f l O f l O  
o x o f l o f l  
f l o x o f l o  
o f l o x o f l  
f l o f l o x o  
o f l o ~ o x  
a a 0 a a 0 

0 a a 0 a a 

a 0 a a 0 a 

~ f l o  
o f l ~  
f l o f l  
f l f l o  
o f l f l  
f l o ¢  
a 0 a 

ct t~ 0 

0 a ct 

a 0 a 

c~ a 0 

0 c~ c~ 

0 0 

o ~ o 

o o 

(21) 

1 1 1 

W3 = 1 a) 60" (0d ----- e-i2~r/3). (24) 

1 w* w 

The required t ransformat ion was performed using Mathemat ica  together  with 
eq. (21) with the common  energy denominator  - D  removed. With  this symmetry  

where 

U = U 6 1 ~ U 6 ~ ) U 3 ,  (23) 

where the three new diagonal symbols 77, X, and ~ are given by 

7 /=  - 4 [ ( 2 4  - 23 - ,,/)/4 + / ) / a ]  = 4[D - a ] ,  

X = - 4 [ ( - 2 4  + 23 - 7 ) / 4  + D/a]  = hID - fl], 

= - 4 [ ( - 2 4  - 23 + 33,)/4 + D/a]  = 4[D - 7]. (22) 

No te  that  (i) while the part i t ioned matrices are in themselves circulants, the overall 
matr ix is not, and (ii) the term 413 is common  to all the diagonal elements and can 
therefore be extracted as a common energy shift. 

To block-diagonalize (21), we make use of  the unitary t ransformat ion of  (14) 
twice, together with a new 3 × 3 unitary t ransformation appropria te  to C3 symme- 
try, i.e. 
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transformation, it was found that the number of non-zero entries in 15 × 15 matrix 
of(21) was reduces from 135 to 37. Further, the new 37 entries could be block-diag- 
onalized according to 

7-[ ( J z  = + I ) / h --- - D  - I  []HII ~ ]HI2 ~ ~-][3 @ ]HI4 ~ ]HIs f~ ]HI6 0 ]HIT] , (25) 

H 1 = 

where 

1' 7' 13' 

- 4 a  + 2/3 2(a + 3") 2/3v"2 2' 

2(a + 3') -2/3 2av'~ , H2 =l - 4 a  - 2~ 

2/3V~ 2 a v ~  - 4 ~  

I[-][ 3 = 

= 

3' 9' 

- 4 a  + fl z l a  

z~a -5 /3  

4' 10' 

z o, - 4 a  +/3 Z 1 = q -  l 

zl~ -5f l  

5' 11' 14' 

-4,~ -/3 z2(~- 23") v~z~/3 
H5 = z~(a - 23') -5/3 x/-2z2a , 

V'~z2/3 v ~ z ~ a  -43" 

Z 2 = 
1 
~+ /7) 

H 6 = 

6' 12' 15' 

- 4 a  - / 3  z;(a - 23") V~Z2/3 
. z2(~ -23') -5/3 

8 I 

H7 = F ~  (26) 

Note that the labels are now [1'), 12'), etc., to reflect the new wavefunctions obtained 
following the unitary transformation of(23). 

From an examination of(26), it is clear that the original 15 x 15 matrix has been 
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block-diagonalized into three 3 x 3, two, 2 x 2, and two 1 x 1 matrices. Thus the 
problem of  diagonalizing the 13"z = + 1) 15 x 15 matrix of 7-/2 has been reduced con- 
siderably. Secondly, we note that the three wavefunctions of  lI-lI1 are completely 
symmetric, being spanned by the wavefunctions I1'), 17'), I13'). It is these wave- 
functions which are the eigenvectors targeted in Am = +4 MQ-experiments via the 
matrix elements: 

M E =  (,F~ = - 3 1 Z J x ( i ) l f f z  = +1) .  (27) 
i 

As a result, symmetry considerations dictate that the number  of  Am = +4 
M Q - N M R  transitions emanating from IJz = -3 )  to [J~ = +1) is limited to a 
max imum of  3. In general, of  course, analytical solutions for the 3 x 3 matrix 
H1, can be found. However, when expressed in terms of a , /3 ,  and 7, these are 
rather tedious. Instead therefore, we have calculated the eigenvalues of HI by 
sett ing/3 = a/(3v/3) and 7 = a/8, and subsequently re-expressing the eigenva- 
lues in terms of /3 .  We find (-9.91406/3, +5.9854/3, -5.03584/3) for the 3 x 3 
matrix of H1. Thus the eigenvalues of the 7-/2 3 x 3 matrix, associated with the 
three symmetric wavefunctions I1'), 17'), 113'), are given by (1.47851/3, 
-2.49635/3, -0.25896/3). In summary, therefore, the three transitions from 
1,7~ = -3 )  ~ [fit = +1) are given by 

AE1 = 4Aw - 4/3 + 1.47851/3, 

AE2 = 4Aw -- 4/3 + 0.25896/3, 

AE3 = 4Aw - 4/3 - 2.49635/3. 

Likewise, for the I,Tz = -1 )  ~ IJz = +3) transitions: 

AE1 = 4Aw + 4/3 - 1.47851/3, 

(28) 

AE2 = 4Aw + 4/3 -- 0.25896/3, 

AE3 = 4Aw + 413 + 2.49635/3. (29) 

Finally, of  course, we must add the Am = +4 M Q - N M R  transitions emanating 
from I,Tz = - 2 )  to Iffz = +2). Using the eigenfunctions, obtained using the unitary 
transformation of(13), it is easily shown that there are 6 allowed transitions of this 
nature. However, all of  these transitions possess the same energy 4Aw. In summary,  
therefore, we expect one peak at 4Aw, flanked symmetrically by three lines below 
4Aw, and three lines above 4Aw. This is found to be the case experimentally, with 
the transition at 4Aw being the strongest. However, it should be noted that  the 
intensities of  the transitions are governed not only by matrix elements of  the form 
(27), but also by the nature of the high-rank multipolar state formed in a MQ- 
N M R  experiment [9,12]. 
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We are now in a position to make contact with experiment. From the MQ- 
NMR results of [6], the splitting between the two Am = 5 peaks is 3.23(5) kHz. 
Since this splitting is given by 7.5/3, we therefore deduce that/) = 0.431 (7) kHz. 
This result can then be used to predict the energy splittings between the Am = +4 
transitions. For the two outermost Am = +4 peaks, the energy separation should 
be 12.9927/) or 5.6(1) kHz, which compares very favourably with the measured 
value of 5.7(1 ) kHz. The predictions for the two other pairs of peaks are 3.22(5) kHz 
(= 7.48208/)) and 2.17(4) kHz (= 5.0298/)), which are to be compared with the 
measured separations of 3.23(6) kHz and 2.16(4) kHz, respectively. Clearly, there 
is a good agreement between theory and experiment. 

Finally, before closing this section we make two further points. Firstly, the 
eigenvalues of N3 and IH[4 are identical, as are those of 1t~5 and I~. Thus in prac- 
tice, it is only necessary to diagonalize two 3 x 3 and one 2 x 2 matrices to 
obtain a full solution for the 15 x 15 ,]z = 1 matrix of 7-/2. Secondly, it has been 
suggested that the three pairs of peaks witnessed experimentally in the benzene 
Am = 4-4 MQ-NMR experiment are associated with the "down-spins" being 
placed in the para, meta, and ortho-positions around the benzene ring. Since the 
dipolar energies of these three spin-configurations differ, we have a natural way 
of explaining the three observed transitions. However, in practice the situation is 
a little more complicated. From an examination of IHI1 it is clear that the eigen- 
functions take the form 

=aj [ l ' )  +b j l7 ' )+c j l l3 ' )  ( / =  1 - 3 ) .  (30) 

where (i) aj, bj and cj are numerical coefficients obtained by.diagonalizing IHI1, and 
(ii) the wavefunctions I1'), etc., are shorthand notations for 

11') = -~[IAB) + IBC) + ICD) + IDE) + IEF) + IFA)] (para), 

17') = -~6 [IaC) + IBD) + ICE) + IDF) + lEA) + IFB)I (meta), 

113') = --~ [laD) + IBE) + ICF)] (ortho). (31) 

Thus in practice, the eigenfunctions are characterized by three distinct mixtures 
of the para, meta and ortho spin configurations for the I,Tz = +1) state, rather 
than the three para, meta, and ortho states taken separately. 

7. The ffz = 0 20 x 20 matrix 

For completeness, the block-diagonalization of the 20 x 20 IJz = 0) matrix is 
detailed in this section, although we shall not give a full discussion of the Am = +3 
or lower MQ-NMR transitions. 
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The matrix in question can be parti t ioned in the following form: 

[All  AI2 AI3 AI4 

I IA~ 2 A22 A23 A24 
7 - / ( " T z = 0 ) = - 4 / A ~ 3 '  " A~3 A33 A34 ' 

(32) 

L AI4 A~4 A~4 A44 
whcre the individual matrices, which are circulants, are given in Table l, together 
with their labclling schemes. The unitary transform which reduces the 20 × 20 
Jz = 0 matrix to block-diagonal form is given by 

W = U6 ~ U 6  ~]~U6~U2, (33) 

where the U6 matrices are given by eq. (14), and the new 2 x 2 matrix U2 by 

V/~21_ I 1 1 ]  (34) 
u 2  = 1 - 1  " 

After performing the unitary transformation, it is easily shown that the ffz = 0 
matrix takes the form 

7~2(& = + 0 ) / h  = - ]bE(20) - ¼ [H'I • Hi • M~ • H~ • H~ • H~], 

where 

1' 7' 1 3' 19' 

(35) 

- 8 a  + 8/3 + 14"), a + 2/3 a + 2/3 

, a + 2/3 8a + 8/3 - 3 7  2 ( a  + / 3 )  

H1 a + 2/3 2(a +/3) 8a + 8/3 - 3")" 

= v %  v %  v %  

v'-33" 3') v %  
v %  

12(2a - 2/3 - 

2' 8' 14 / 

I 
- 8 a  + 8/3 + 10'), a - 2/3 - a  + 2/3 

, a - 2/3 8a + 8/3 - 5')' 2 ( a  - / 3 )  

N2 = - a  + 2/3 2(c~ - /3 )  8a + 8/3 - 5,)' 

20 / 

- v ~ a  

v %  
12(2~ - 2/3 - 3") 

3' 9' 15' ] - 8 a  + 8/3 + 13,), a +/3 z(a +/3) 

1~ = I' a + / 3  8 a  + 8/3 - 5,)' z ( a  - / 3 )  

z* (a + 9) z*(~ - / 3 )  8~ + 8/3 - 5,)' 

z = 2 (1 + ivY) 
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Tab le  1 

Pa r t i t i oned  ma t r i ces  for the f fz  = 0 20 x 20 mat r ix .  

A l l  = 

A B C  BCD CDE DEF EFA FAB 

"7 0 0 0 "~ 

J 
"7 ~ 7 0 0 0 

0 7 ~ 7 0 0 ; 

0 0 7 ~ 7 0 

0 0 0 7 q 7 

7 0 0 0 7 q 

A22 = 

A B C  BCE CDF DEA EFB F A C  

¢~ 0 0 7 0 0 

0 'I~ 0 0 7 0 

0 0 'I~ 0 0 3' 

7 0 0 'I' 0 0 

0 7 0 0 ¢' 0 

0 0 7 0 0 ¢' 

A33 = 

A C D  BDE CEF DFA EAB FBC 

#~ 0 0 7 0 0 

J 
0 ,~ 0 0 7 0 

0 0 • 0 0 7 

7 0 0 ¢ 0 0 

0 .r 0 0 ¢ 0 

0 0 "r 0 0 ¢, 

; A 4 4 =  

A CE BDF 

A B C  

BCD 

At2 = CDE 
DEF 

EFA 

FAB 

ABD BC E  C DF  DEA EFB FAC 

a t3 0 0 0 /3 ~ A B C  

/3 a 13 0 0 0 I BCD 
0 /3 a /3 0 0 ; Ai3 = CDE 

0 0 /3 a 13 0 DEF 

0 0 0 /3 a /3 EFA 

13 0 0 0 /3 a FAB 

ACD BDE CEF DFA EAB FBC 

c~ /3 0 0 0 13 

J 
~ /3 o o o 

o /3 ,x /3 0 o 

0 0 /3 a /3 0 

0 0 0 /3 a /3 

/3 0 0 0 /3 a 

A23 = 

ABD 

BCE 

C D F  

DEA 

EFB 

F A C  

A C D  BDE CEF DFA EAB FBC 

~ 0 /3 c, 0 

0 e~ /3 0 /3 o~ 

e~ 0 o~ /3 0 /3 

/3 a 0 ~ /3 0 

0 /3 a 0 ~ /3 

/3 0 ~ a 0 

ABD 

BCD 

AI4 = CDE 
DEF 

EFA 

FAB 

A C E  B DF  

7 0 

0 7 

7 0 

0 7 

7 0 

0 7 

ABD 

BCE 

; A24 = CDF 
DEA 

EFB 

FA C 

A CE BDF 

0 a 

a 0 

0 a 

a 0 

0 a 

a 0 

A C D  

BDE 

; A34 = CEF 
DFA 

EAB 

FBC 

A C E  BDF 

a 0 

0 a 

a 0 

0 a 

a 0 

0 a 

Key:  ~ = - 4 ( 2 c ~ - 2 / 3 - 3 7 ) ,  ~ = - 4 ( - 2 a - 2 / 3 + " 7 ) ,  A = - 4 ( - - 6 c ~ + 6 1 3 - - 3 7 )  
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10' 161 

, = - 8 a  + 8/3 + 133' a + /3  z* (a +/3)  

H4 a +/3 8a + 8/3 - 5"r z* (a - /3 )  

z(~ +/3) z(o~ - /3)  8,~ + 8/3 - 5~ 

51 11' 1T 

- 8 a  + 8/3 + ll ,y 

~ z(-,~ +/3) 

- / 3  z* ( -~  +/3) 
8c~ + 8/3 - 3"~ z*(a +/3) 

z(c~ +/3) 8a + 8/3 - 37 

6' 12 / 181 

I - 8 a  + 8/3 + 117 

l z * ( - ~  +/3) 

- 9 z ( - ~  + 9) 

8~ + 8/3 - 3"r z(~ +/3) 

z*(~ +/3) 8c~ + 8/3 - 3~/ 

Note  that  the labelling scheme 1'-20' used in (36) implies that  the new wavefunc-  
t ions are those obta ined after applying the uni tary t ransformat ion  of(33). 

F r o m  an examinat ion  of  (35) and (36), it is evident that  the 20 × 20 ,Y~ = 0 
matr ix  has been block-diagonalized into two 4 x 4 matrices and four 3 x 3 
matrices.  Fur ther ,  the eigenvalues of H3 are identical to those for I[]I4, as are those 
for H5 and H6. Thus  even for the 20 x 20 ff~ = 0 matrix,  it is only really necessary 
to diagonalize two 4 x 4 matrices, and two 3 x 3 matrices. Finally, we note  that  
since there are only four symmetr ic  eigenfunctions belonging to H1, this limits the 
allowed transit ions f rom [,7z = - 3 )  ~ IJz = 0) to just  four, with a similar result 
for the ],.Tz = 0) ~ [,Jz = +3) transitions. To these, of  course, we mus t  add the 
al lowed transit ions f rom [ff~ = - 2 )  ~ [ffz = 1) ,and [Jz = - 1 )  ~ If fz  = 2). 

8. Conc lus ions  

In this paper,  it has been shown that  analytical solutions can be obta ined for 
the evolut ion of  the six spin 1/2 dipolar  coupled hydrogen nuclei of  the benzene 
ring, in the secular approximat ion.  This has been proved possible by (i) exploit ing 
the fact that  ffz is a good  quan tum number ,  (ii) dividing the Hami l ton ian  up into 
two c o m m u t i n g  terms 7-/1 + 7-/2, and (iii) devising uni tary t ransformat ions  which 
exploit  the symmetry  of  the benzene ring, reduced by differing combina t ions  of  
spin-up and spin-down spins. The results have allowed clear identif icat ion of  (i) the 
al lowed Z~xm = +4,  5, and 6 M Q - N M R  transit ions,  and (ii) the initial and  final 
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wavefunctions involved in such transitions. Finally, the origins of  the Am = +4 
I,Tz = -3 )1 ,7z  = +1), and 16rz = -1)[ffz = +3) MQ-NMR transitions have been 
discussed in the light of the exact solutions. In particular, it has been demonstrated 
that the three pairs of  transitions either side of  4Aw central peak are characterized 
by differing mixtures of the para, meta, and ortho spin configurations. Finally, it 
has been shown that there is an excellent agreement between theory and experiment 
for the energy splittings of the Am = +4 and +5 MQ-NMR transitions. 
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